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Link trustworthiness evaluation is a crucial task for information networks to evaluate the probability of a link being true in a
heterogeneous information network (HIN). *is task can significantly influence the effectiveness of downstream analysis.
However, the performance of existing evaluation methods is limited, as they can only utilize incomplete or one-sided information
from a single HIN. To address this problem, we propose a novel multi-HIN link trustworthiness evaluation model that leverages
information across multiple related HINs to accomplish link trustworthiness evaluation tasks inherently and efficiently. We
present an effective method to evaluate and select informative pairs across HINs and an integrated training procedure to balance
inner-HIN and inter-HIN trustworthiness. Experiments on a real-world dataset demonstrate that our proposed model out-
performs baseline methods and achieves the best accuracy and F1-score in downstream tasks of HINs.

1. Introduction

Heterogeneous information network (HIN) is an efficient
technique to model complicated real-world information
through a network structure, in which network nodes in-
dicate multi-typed real-world nodes and edges indicate
relationships between nodes. For example, MovieLens [1]
and IMDB are typical examples of HIN in movie domains
modeling relationships among movies, actors, directors, etc.
Containing richer structural information, HINs bring about
plenty of opportunities for data mining in complicated
applications. However, erroneous information commonly
exists in HINs. Because HINs are mainly constructed by
information retrieving techniques nowadays, the unreli-
ability of web sources and the biases of techniques [2] may
lead to subtle errors. Downstream analysis tasks employing
these biased data will cause accumulated errors in the ap-
plications. *erefore, the task of evaluating the

trustworthiness of HINs should be stressed to maintain the
reliability of HIN data and improve the accuracy of
downstream tasks [3]. Specifically, let t : � (Ns, Ep, No)G be
a link in the HIN G, starting from the subject node Ns and
ending with the objective node No with the corresponding
edge Ep.*us, worthiness evaluation tasks aim at computing
a probabilistic trustworthiness T(wt

G) ∈ [0, 1] for every link
t inG. Here, T(wt

G) � 1 indicates link t is completely correct
while T(wt

G) � 0 when t is totally incorrect.
Current HIN trustworthiness evaluation methods are

mainly based on knowledge base (KB) methods [4]. *ey
focus on inferring a link’s trustworthiness in a single HIN,
where the trustworthiness metric should evaluate how re-
liable this link is. In addition to basic characteristics like
node types [5], attributed values [6], and confidence of
extracted source, trustworthiness is typically evaluated from
other perspectives. Network embedding methods [7] con-
sider whether nodes and edges satisfy in the network

Hindawi
Complexity
Volume 2021, Article ID 6615179, 11 pages
https://doi.org/10.1155/2021/6615179

mailto:meng.wang@seu.edu.cn
https://orcid.org/0000-0002-2293-1709
https://orcid.org/0000-0001-7287-1436
https://orcid.org/0000-0003-3829-7121
https://orcid.org/0000-0002-0705-7304
https://orcid.org/0000-0002-1957-6961
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6615179


topology. For instance, R-GCNmodels relational data in the
GCN framework. On the other hand, edge learning methods
[3, 8–10] measure the acceptability of a link composed of an
edge and two nodes corresponding to it. For example,
TransE [9] considers whether the embedding nodes and
edges of multi-relational data converge in low-dimensional
vector spaces.

Almost all the previous trustworthiness evaluation
methods are focusing on only one HIN; however, the in-
formation in a single HIN tends to be uncompleted or one-
sided. Notice that multiple HINs may capture information
from the same resources, and it is crucial to accomplish
trustworthiness evaluation with the help of multiple HINs
that model the same or similar domains which is shown in
Figure 1. For example, HIN 1 has a description of Leonardo
DiCaprio starring in *e Great Gatsby where no connection
between actors are shown in this HIN, while HIN 2 has links
connecting actors, for example, Leonardo DiCaprio has
cooperated with MatthewMcConaughey. *us, we can infer
more information about Leonardo DiCaprio’s starred films.
Different HINs usually have different emphasis even on the
same domain. For example, two HINs constructed based on
IMDB and YouTube, respectively, are different in many
aspects even when they all model the information of videos.
In one HIN, some links have ample evidence, while related
links in another HIN only have little evidence such that it is
difficult to evaluate trustworthiness in single HIN. *us, in
the multi-HIN situation, trustworthiness evaluation can be
different as links in one HIN can influence their counterparts
in another one. *ese related links from different HINs are
called interactive links, and shared information of interac-
tive links should improve the effectiveness of evaluation.

However, evaluating trustworthiness with multiple HINs
is a nontrivial task because of several challenges:

(1) Aligning Interactivity. *e first challenge is how to
determine the interactivity. If interactive links are
only based on the same nodes or edges, the influence
scope will be restricted, and the error introduced by
the alignment procedure will deduce the evaluation
result.

(2) Evaluating Influence across Multiple HINs. *e
second challenge is to design an influential method
across HINs. Having determined the interactive
degree between a pair of interactive links, how to
update this pair should be carefully processed.

(3) Balancing Inner-HIN and Inter-HIN Trustworthiness.
It is difficult to balance the inner-HIN and inter-HIN
trustworthiness. It will be redundant and laborious
to initially evaluate a link’s trustworthiness in every
single graph and then evaluate it again in the co-
embedding space.

*ese three difficulties make multi-HIN trustworthiness
problems different from and much more difficult than
traditional single HIN settings.

To address challenges in multi-HIN trustworthiness
evaluation tasks, we propose a multi-HIN trustworthiness
evaluation (multi-HITE) model, aiming at leveraging inner-

HIN characteristics and inter-HIN information in the co-
embedding space to evaluate link trustworthiness. *ree
aforementioned challenges of multi-HIN tasks are solved
accordingly through the following:

(1) Multiple Interactive Links Effect Functions. We de-
sign three kinds of functions to evaluate the inter-
active links effect (ILE) across different HINs. *ese
ILE functions evaluate the interactivity from literal
level, semantic level, and graph level, respectively.
Altogether, these functions help our model align
interactivity across multiple HINs.

(2) Iterative Procedure to Update Trustworthiness. In-
fluential information across HINs is updated iter-
atively in the training process through threshold-
based influence function.

(3) Integrated Learning with Multi-HINs. *e loss
function of our model measures the inner-HIN and
inter-HIN trustworthiness of multiple HINs at the
same time. Additionally, the trade-off between these
two parts is controlled by hyperparameters.

Specifically, this paper has made the following
contributions:

(1) To our best knowledge, our method is the first one
considering evaluating the trustworthiness of HIN
links in multi-HIN settings.

(2) We propose a novel multi-HIN trustworthiness
evaluation method combining inner-HIN and inter-
HIN characteristics in a co-embedding space.

(3) We conduct experiments on a real-world dataset that
proves the effectiveness of our model. Based on
different kinds of interactive metrics, we conduct
several experiments using a real-world dataset
compared with modified single-HIN evaluation
methods on the tasks of error detection and link
prediction.

Notations. A HIN is denoted by G and t � (Ns, Ep, No)G

represents one link in G. A set of multiple HINs is repre-
sented as S � G1, G2, . . . , GK􏼈 􏼉. Let Ns, No, and Ep denote
subjective node, objective node, and node relations in the
original spaces and let Ns, No, and Ep, respectively, denote
their representations in the embedding space. Given a vector
x ∈ Rp, ‖x‖ �

���������������
x2
1 + x2

2 + · · · + x2
p

􏽱
denotes its l2-norm, and

given a matrix X ∈ Rm × n, its l2-norm is defined in an
elementwise manner as ‖X‖ �

�����������������
􏽐1≤ i≤m, 1≤ j≤ n(Xij)

2
􏽱

.

2. Materials and Methods

2.1. Trustworthiness in a SingleNetwork. Due to the concerns
about the influence of data quality on downstream tasks, link
trustworthiness evaluation in an HIN and of a HIN source
has quickly gained popularity among researchers [11]. Most
existing methods are based on knowledge bases. Early
methods are rule-based or statistical. For example, Ma et al.
[12] learned disjointness axiom via association rule mining
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to dynamically update rule patterns. A statistical example is
SDValidate [5], which detects noise in a HIN via the sta-
tistical distribution of the properties and types.

Another popular approach is to integrate the KB rep-
resentation learning into the models to evaluate the trust-
worthiness in embedding space. Typical examples are the
translation models, including TransE [9] and its variants like
TransH [8] and TransR [13]. In Trans-series model, if the
energy function of a link in the embedding space

A w
t
G􏼐 􏼑 � Ns + Ep − No

�����

����� (1)

scores larger than a desired value, it is assumed that this link
has little local context proof in original HIN space, i.e.,
having low trustworthiness.

In addition to translation models, CKRL [11] exploits the
structure information by defining local link confidences and
global path confidence to detect noises in HINs.*is method
exploits the structure information of the network. KGTtm
[10] is a multi-level knowledge graph link trustworthiness
evaluation method. It separates evaluation into nodes, edges,
and graph levels, combining the internal semantic infor-
mation of links and the global inference information of the
KB. However, none of these methods consider utilizing
other HINs that model similar domains. *erefore, their
performance is limited as the information from a single HIN
tends to be incomplete or one-sided.

2.2.LearningacrossMultipleHINs. In the multi-HIN setting,
as nodes and edges in different HINs are extracted from
different sources, network alignment methods are proposed
to find corresponding nodes across multiple networks.
Typically, network alignment can be categorized into local
alignment and global alignment. Local alignment aims to
find similar local regions across networks [14]. Global
alignment focuses on exploiting the global topological
consistency, such as in iNEAT [15] and CAlign [16].

Conventional KB methods briefly use handcrafted
“sameAs” link, literal information, and attribute features to

generate linkages between different HINs [17, 18]. Recent works
focused on representation learning across multi-relational
graphs, noticing that aligned nodes should be similar in space
[19]. MTransE [20] tries to merge graphs and uses relational
learning methods to discover aligned nodes. It combines three
different transformation methods to learn embedding for
supporting multi-lingual learning. LinkNbed [21] learns latent
representations of nodes and edges in multiple graphs where a
unified graph embedding is constructed, avoiding the bias
caused by the transformation between different HIN
embeddings.

We naturally consider utilizing similar methods in node
alignment in the multi-HIN trustworthiness evaluation
problem. However, these methods of the node alignment
problem lack global structure inference information, which
prevents these methods from being directly generalized to
multi-HIN trustworthiness evaluation.

2.3. General Structure of Trustworthiness Evaluation. To
address the limitations of previous evaluation methods, we
propose a novel method inherently considering inner-HIN
and inter-HIN effects. *e trustworthiness evaluation in
multi-HIN settings can be separated into two parts. *e
general idea is shown in Figure 2.

Firstly, given the overall trustworthiness VGi
of the i-th

HIN, evaluate trustworthiness score of all links tj ∈ Gi because
in the multi-HIN situation, different HINs have different re-
liabilities. *e trustworthiness of a link in graph Gi is not only
based on the inner-HIN trustworthiness A(w

tj

Gi
) calculated by

inner characteristics of Gi but also dependent on the HIN
source confidence VGi

. *is influence can be denoted as

T w
tj

Gi
􏼒 􏼓 � VGi

A w
tj

Gi
􏼒 􏼓. (2)

Initially, all global confidence VGi
is assigned to 1. *us,

according to the representations for head nodes, tail nodes,
and edges which are generated by inner characteristics and
initial source trustworthiness, the trustworthiness of links
can be calculated for every HIN.

Leonardo
DiCaprio

Inception
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Nolan
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great

gatsby

Leonardo
DiCaprio

Anne
Hathaway

Interstellar

HIN 1 HIN 2

Matthew
McConaughey
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Figure 1: General situation of multi-HIN problems.
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*en, in the second step, we use link trustworthiness
score to conversely update VGi

based on T(w
tj

Gi
). In the

opposite view of the multi-HIN problem, we assume that the
trustworthiness of a HIN source is determined by all links’
trustworthiness in the source and is computed via

VGi
�

1
nGi

􏽘
tj∈Gi

T w
tj

Gi
􏼒 􏼓. (3)

Here, nGi
means the total number of links in graph Gi,

which acts as a normalization factor. At each iteration, VGi
is

firstly fixed to calculate single link’s trustworthiness
according to equation (2) followed by fixing T(w

tj

Gi
) to

calculate VGi according to equation (3). After the iterative
training has converged, a steady trustworthiness evaluation
of HIN source and link can be obtained.

*e above procedure is commonly used in no-mutual-in-
fluence multi-HIN settings. As for mutual-influence multi-HIN
cases, the influence between differentHINs needs to bemodeled,
where our method models this influence by the trustworthiness
influences between interactive links across HINs. *is will be
discussed in “Inter-HIN Evaluation” Section. Specifically, dif-
ferent HINs are placed on the co-embedding space to represent
the influence between the sources. If HINs are separately
evaluated in their own space, this will cause redundant proce-
dure in the transformation betweenHIN spaces whichmake the
model difficult to train. *en, having obtained inner scores for
links in both HINs, interactive influence will update corre-
sponding links’ scores. *e final step is to update the source
trustworthiness. *is process will be iteratively conducted. All
HIN sources’ trustworthiness values are initially set to 1 and after
iterative influencing between sources and links, the final scores
of links and sources will be obtained.

Because the process of trustworthiness evaluation is the
same in all the HINs, without loss of generality, we use G and
t to denote an arbitrary HIN and a certain edge in it.Without
explicit statements, we drop the subscripts i and j for
simplicity in the rest of this paper.

*e following sections will be organized as follows: we
detail our model’s trustworthiness evaluation in a single HIN
in Subsection 2.4, the details of the multi-HIN mutual

influence method in Subsection 2.5, and the training method
tailed for multi-HIN evaluation in Subsection 2.6.

2.4. Inner-HIN Evaluation. We start by considering how to
compute the link trustworthiness score with inner-HIN
characteristics. Based on the current single HIN trust-
worthiness evaluation methods [22], HIN’s inner charac-
teristics, including semantic and graphic information, are
strong proofs to evaluate the reliability of links. In our
model, we utilize four inner-HIN characteristics including
node attributes, node-type constraints, contextual em-
beddings, and graphic energy transmission information to
evaluate links.

2.4.1. Node-Attribute Information. Node attributes are the
basic and effective information to assess whether a node is
consistent with its value. Here we use doc2vec [23] to embed
attribute values and then integrate the value with its one-hot
attribute key index to represent hidden information of
nodes. If a node has several attributes, the hidden attribute
information will be averaged.

2.4.2. Node-Type Constraint. For a certain edge, the nodes
appearing near it normally have prevalent and uniform
types. *us, for each edge, we can summarize the node types
that emerge around it. *en, the node-type information and
edge embedding information are integrated into the hidden
layer.

2.4.3. Contextual Embedding Information. Trans-series
models embed nodes and edges in low dimension repre-
sentation space.*ese embeddings contain global contextual
information where outliers can be found based on the in-
consistency. However, we are not directly using the energy
function to evaluate the consistency. Here, we utilize the
fully connected layer to unite other inner-HIN character-
istics with embeddings to get a hidden layer’s representation.

Node attributes

Node types

Graphic
attributes

Node
embedding

Edge
embedding

Head hidden
representation

Edge hidden
representation

Tail hidden
representation

Trustworthiness
score

HIN
trustworthiness

updation

Interactive
influence

HIN 1

HIN 2

Inner
characteristics

Interactive links from HIN 1

Interactive links from HIN 2

Co-embedding
space

Figure 2: General structure of multi-HIN trustworthiness evaluation method.
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2.4.4. Graph Energy Transferring Information. HIN is a
special heterogeneous network, where basic network anal-
ysis techniques can be utilized. If a link has strong con-
nectivity or other favourable graphic features, it also
indicates sufficient proofs in the HIN. Here we mainly
concentrate on the energy flow between the head node and
the tail node. In this situation, we can construct a single
graph for each node in the HIN, where the node is the central
node. All nodes associated with the central node are taken
into consideration. *e energy transferring can be modeled
with page-rank-like method [11, 24]. However, iterating
through a graph will have a long tail phenomenon where the
majority of nodes have low energy. Hence, we add several
features like in-degree and out-degree into consideration as

g Ns, No( 􏼁 � ε ×
e Ns, No( 􏼁

e Ns( 􏼁
+(1 − ε) × fNs,No

din, dout( 􏼁.

(4)

Here, g(Ns, No) is the combined energy transmitted
between embedded nodes Ns and No. e(Ns) represents the
energy thatNs holds in the graph, and e(Ns, No) denotes the
energy flowing from Ns to No. fNs,No

(din, dout) is the energy
function determined by the in-degree and out-degree of Ns

and No. Besides, ϵ is a hyperparameter balancing the page-
rank-like energy and degree-determined function.

After obtaining the above four different features, each
feature is transmitted to the hidden dimension by a separate
linear forward layer followed by the combination of all
features of the same node or link, as shown in Figure 2. After
obtaining the hidden representation z ∈ Rn (n is the size of
hidden states) of the head node, tail node, and edge, we use
the following function to model the trustworthiness:

T w
t
G􏼐 􏼑 � VG × σ z

⊤
p zs ⊙ zo( 􏼁􏼐 􏼑, (5)

in which σ(·) is the activation function of the neural network
and ⊙ denotes the elementwise multiplication. *e score
function is related to the score of the link’s located HIN, so it
needs to multiply the located HIN’s score VG. Part of this
function is initially adopted by DistMult [25].

With all these, we can calculate traditional trans-
mission loss in every single HIN of S. *is loss is used to
model local information of a HIN. For a specific link t

shown in the original dataset, we call it a positive link. *e
negative links set c(G) is generated by replacing the head
and tail node of t with other nodes so that negative links
do not appear in the original dataset. Specifically, for a
HIN G ∈ S, let T(wt

G) and T(wt′
G) be the positive score and

negative score, respectively, for the positive link t and
negative link t′ in this HIN, and the relational loss for
multiple HINs is

Lrel � 􏽘
G∈S

􏽘
t∈G

􏽘

t′∈c(G)

max 0, c − T w
t
G􏼐 􏼑 + T w

t′
G􏼒 􏼓􏼒 􏼓).⎛⎝ (6)

Here, c is the margin between positive links and negative
links, and c(G) is a set of corrupted links t′ corresponding to
links t in the HIN G.

2.5. Inter-HINEvaluation. In multi-HIN settings, inter-HIN
influence is another crucial component of the evaluation.
*erefore, we further include inter-HIN influence into the
loss function for trustworthiness evaluation. If a link
(Ns, Ep, No)G in one HIN G has influence on a link
(Ns′ , Ep′ , No′)G′ in another HIN G′, we call these two links
interactive links. *e way how interactive links influence
each other in different HINs is called Interactive Links Effect
(ILE). We use h(·) to denote ILE and propose three different
kinds of ILEs that are utilized in our method for modeling
interactivity from three levels: literal level, semantic level,
and graph level.

2.5.1. Value ILE. If two nodes refer to the same real-world
node, they should share similar attributes [26]. Based on this
assumption, from the literal level, the value ILE can be
defined to evaluate influence for nodes of a pair of interactive
links. Let p(N) denote the attribute value set of the node N

and c(N1, N2) represent the common attributes shared by
nodes N1 and N2 in the embedding space; value ILE is
computed via

hvalue Ns, Ep, No􏼐 􏼑
G
, Ns′ , Ep′ , No′􏼐 􏼑

G′􏼐 􏼑

�
c Ns, Ns′( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

p Ns( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + p Ns′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − c Ns, Ns′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+
c No, No′( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

p No( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + p No′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − c No, No′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(7)

in which | · | is the number of elements in a set.

2.5.2. Alignment ILE. If two links have aligned nodes or
edges, they should be interactive. Additionally, aligned
nodes or edges are close in embedding space [19]. *us, we
can assume that if two links are interactive, at least one of the
nodes or edges should be close in the embedding space.
Besides, only one aligned part is not sufficient as many links
describe the same node from a different perspective like “Yao
Ming-wife-Ye Li” and “Yao Ming- teammate-Tracy
McGrady.” *us, we add separate distances of co-space
embedding of nodes and edges together and restrict the
distance of interactive links of this embedding distance to
determine whether two links are interactive or not. With
this, we define the alignment ILE as

halignment Ns, Ep, No􏼐 􏼑
G
, Ns′ , Ep′ , No′􏼐 􏼑

G′􏼐 􏼑

� Ns − Ns′
����

����2 + No − No′
����

����2 + Ep − Ep′

�����

�����2
.

(8)

2.5.3. Neighbour ILE. According to the semantic similarity
work [27], if nodes share similar surroundings, there exists a
possibility that they have semantic similarity; in other words,
they are interactive. *us, we use neighbouring nodes of the
head and tail nodes to evaluate the ILE. Let n(N) denote the
average embedding for neighbouring nodes of node N; then,
we have
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hneighbour Ns, Ep, No􏼐 􏼑
G
, Ns′ , Ep′ , No′􏼐 􏼑

G′􏼐 􏼑

� n Ns( 􏼁 − n Ns′( 􏼁
����

����2 + n No( 􏼁 − n No′( 􏼁
����

����2.
(9)

With all three ILE functions, we can inherently use them
to determine if two links from two different HINs have
influence on each other. Specifically, we design a matrix I to
represent the interaction of two HINs. For a certain link
i ∈ G and another link j ∈ G′, their interactive status is
defined as

Ii,j � 1 hvalue(i, j)< θvalue( 􏼁 + 1 halignment(i, j)< θalignment􏼐 􏼑

+ 1 hneighbour(i, j)< θneighbour􏼐 􏼑,

(10)

where 1(c) is the indication function with 1(c) � 1 if
statement c is true; otherwise, 1(c) � 0. *ree ILE thresholds
including θvalue, θalignment, and θneighbour are playing the roles
of hyperparameters.

Intuitively, the trustworthiness of two interactive links
should be close to each other. However, there exist cases
where two links are interactive, but one has large trust-
worthiness while that of another link is low. *us, trust-
worthiness scores of two links should be deducted.
Specifically, for i ∈ G and j ∈ G′, we design the influence
between links i and j as R(i, j) � 0 if Ii,j � 0; otherwise,

R(i, j) �
T w

i
G􏼐 􏼑 − T w

j

G􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, if T w
i
G􏼐 􏼑 − T w

j

G􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ ρ,

T w
i
G􏼐 􏼑 + T w

j

G􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, if T w
i
G􏼐 􏼑 − T w

j

G􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 > ρ.

⎧⎪⎨

⎪⎩

(11)

Combining all the inter-HIN influences of interactive
links, we introduce the interactive loss:

Lint � 􏽘
(i,j)∈In

R(i, j),
(12)

with a set of interactive links In.

2.6. Model Training in Multi-HIN Settings. To obtain the
trustworthiness both in single-HIN and multi-HIN per-
spectives, we introduce the multi-task objective function,
which models the contextual information of local and in-
fluential information. We integrate relational loss with in-
teractive influential loss by using a hyperparameter β as the
trade-off and obtain

L � β Lrel +(1 − β)Lint. (13)

*e training process of our model can be separated into
two main procedures.

In the first phase, we minimize the loss function with a
neural network. We put inner graph characteristics into the
neural network, including node attributes, node-type con-
straints, node and edge embeddings, and graph energy
transferring information. *en, we separately combine
node-related features into hidden representations of nodes
and combine node-type constraints with edge embeddings
into hidden representations of edges. *e detailed structure

of this neural network is shown in Figure 3. In the network,
e1(·) is the node energy function for a certain node. e2(·) is
the node embedding, e3(·) denotes the attribute embedding,
e4(·) represents the edge embedding, and e5(·) is the type
embedding of a node. Moreover, weight matrices
We1h, We2h, We3h, We4h, andWe5h project different features
to its hidden representations. Function r(·) projects em-
beddings in the same space. Besides, Wer, Wnr, and War

combine node-related features to generate hidden repre-
sentations of nodes while Wlr and Wtr combine edge-related
features to generate hidden representations of edges. In
addition, we further attach an extra regularizer to control the
size of all the parameters. Let Ω � We1h, We2h,􏼈

We3h, We4h, We5h, Wer, Wnr, War, Wlr, Wtr} denote a set of
all the weight parameters in the neural network, and the
regularized loss function becomes

L � β Lrel +(1 − β)Lint + 􏽘
W ∈Ω

‖W‖2. (14)

After evaluating the score for all links in multiple HINs,
we can iteratively use equations (2) and (3) to update the
trustworthiness of HIN and each link, until results converge.
*e pseudocode of our method is shown in Algorithm 1.

3. Results and Discussion

In this section, we implement comprehensive experiments to
test the performance of ourmodel from various perspectives.

3.1. Dataset. We choose to use two HIN alignment datasets
DBP-WD and DBP-YG [28] in our experiments. *e first
dataset is sampled from DBpedia and Wikidata (i.e., two
HINs) and contains 100 thousand aligned nodes, while the
second dataset is extracted from DBpedia and YAGO with
same 100 thousand aligned nodes. Information about node
types is attached to the data according to DBpedia type in-
formation. Tables 1 and 2 provide statistics of these datasets in
the experiment.We split this dataset into training, testing, and
validation set with the ratio as 10 :1 :1. Besides, DBP-WD
dataset is used in all experiments while DBP-YG is only used
in Experiment III. DBpedia in DBP-WD is noted as DBpedia
while DBpedia in DBP-YG is noted as DBpedia2.

Furthermore, we generate some negative links in the
dataset to simulate noisy data with erroneous links. Spe-
cifically, for one negative link, we replace the head or tail
node of a positive link so that it does not appear in the
original dataset. Other characteristics including node at-
tributes, node types, and neighbouring nodes remain the
same with the replaced node. To obtain a different level of
noise, similar to the simulation implemented in [11],
multiple noisy datasets are simulated with the percentage of
replaced negative links of 10%, 20%, and 40%. Notice that
the noises are only added to the training set.

3.2. Baseline Methods. As there is no trustworthiness eval-
uation method previously proposed in multi-HIN settings,
we directly extend traditional embedding methods into
multi-HIN cases as baseline methods. We use embedding
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methods including TransE [9], R-GCN [29], DistMult [25],
and ComplexE [30]. However, we are not using original
versions of these algorithms. Instead, we use refined models
from OpenKE [31] to compare our model with current
frequently used model versions. Because these methods do
not generate trustworthiness scores directly, we calculate the
trustworthiness score according to their threshold where a
link score that is larger than the threshold is thought as 0,
otherwise as 1. Moreover, because these methods are not
proposed for multi-HIN cases, they are not able to integrally

analyse multiple HINs. *us, we use these methods to
evaluate trustworthiness scores separately on different HINs.

Additionally, we simplify our model for comparisons
between our model with its simplified version. We use two
simplified models to show the effectiveness of our model
setting. *ese two versions of methods are denoted as
Mattribute- and Minfluence-, respectively. Mattribute- is a version
ignoring node attribute inner-HIN characteristic where in
the inner-HIN evaluation stage, only node-type constraint,
contextual embedding information, and graph energy
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Figure 3: Detailed structure of neural network.

REQUIRE: S, maximal epochs of training T; source trustworthiness V.
for G ∈ S do

VG←1
end for
while T> 0 do
for G ∈ S do
for t ∈ G do
Calculate link score according to (2)

end for
end for
for G ∈ S do
Update source trustworthiness VG

end for
T←T − 1
Backpropagate loss and update parameters in the neural network

end while

ALGORITHM 1: Multi-HIN trustworthiness evaluation.

Table 1: Statistics of HINs constructed based on DBpedia and Wikidata.

HIN # of nodes # of edges # of attributes # of node types # of links
DBpedia1 100000 686 622331 225 463294
Wikidata 100000 946 990517 295 448774
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transferring information are taken into consideration.
Minfluence- is the simplified model neglecting influence
methods through ILE betweenHINs, where in the inter-HIN
evaluation stage, all ILEs are set to 0 so that there exist no
interactive links.

3.3. Hyperparameter Setup. In the neural network of our
model, the size of the node embedding is 256, the edge
embedding size is 64, and the attribute embedding size is
512. *e hidden size and combined node/edge size is 512.
We use the ReLU function as the activation function in the
model. *e sigmoid function is used in the output layer for
producing the trustworthiness score. *e value of learning
rate is selected from 0.1, 0.01, 0.001{ } and set as 0.001, and
the batch size is selected from 10, 40, 100{ } and set as 0.001.
*ese hyperparameters are selected through cross-validation
with the best performance in multi-HIN situations.

*e value of margin c in our function is selected from
0.5, 0.8, 1{ }. Moreover, we use l2-norm as the regularizer to
control all the trainable parameters in the neural network.
Inner-HIN loss and cross-HIN balance parameter β is selected
from 0.3, 0.5, 0.7{ } and set as 0.5. Graphic balancing parameter
ϵ is selected from 0.3, 0.5, 0.7{ } and set as 0.5. Influencemethod
control threshold parameter ρ is selected from 0.01, 0.1, 0.5{ }

and set as 0.1. Value influence threshold θvalue is selected from
0.5, 0.8, 0.9{ } and set as 0.8. Alignment influence threshold
θalignment is selected from 0, 0.1, 0.2, 0.4{ } and set as 0.2.
Neighbouring influence threshold θneighbor is selected from
0, 0.1, 0.2, 0.4{ } and set as 0.1. *ese hyperparameters are
selected through cross-validation with the best performance in
multi-HIN situations.

3.4. Experiment I: Errorless Link Classification. Link classi-
fication is the task of testing the model trustworthiness
evaluation ability in new data. In our experiment, this ex-
periment is implemented on the testing set. It is a simplified
task compared with error link classification and link error
detection [11] where there is no noise in the training set. *e
correct link is labelled as 1 while a false link is labelled as 0.
*e model output lies in the range of [0, 1], representing the
probability of one link being a correct one.*e trustworthiness
score is binarized into 0 (false link label) or 1 (correct link label)
based on a threshold value. Namely, given a link, the trust-
worthiness score is calculated according to equation (5). If the
trustworthiness score is larger than the threshold, this link is
labelled as the correct link, otherwise, the false link.

Here, we compare our model with other models in basic
situations, namely, in separate HIN space and in combined
HIN spaces. Besides, in this experiment, we train and test on
the original dataset, not adding false links into training. Also,
assuming we do not know where the link comes from, the
HIN source trustworthiness VG is set to 1.

Experimental results are shown in Table 3. Obviously,
our model outperforms baseline methods in separate HIN
and combined HIN space, which indicates that the hidden
information representing the reliability of links has been well
learned in our model. We can analyse this result from two
different perspectives: (1) single HIN and multi-HIN; (2)

influence of inner-HIN characteristics. From the view of single
and multi-HIN, we can notice that when HINs are combined,
in other words, when data are augmented, evaluation results
are improving compared with those in single HIN situation.
*is can be also proved from the threshold dropping in TransE,
DistMult, and partial ComplexE results. *is proves that
though previous methods do not directly consider the con-
nection between HINs, they can model the inherent rela-
tionship between multiple HINs in other implicit ways while
their results are no better than our explicit relationship
modeling method. From the view of influence from inner-HIN
characteristics, attribute characteristics are rather important in
the link classification task, as we can see the accuracy of
Mattribute- drops by nearly 5% compared with normal multi-
HITE model. Our model can achieve convergence by running
two or three epochs on the training data. In the DBP-WD
dataset, it takes 45 minutes for one epoch. *e network em-
bedding model usually takes two hours to network embedding,
followed by the training of the classification task which costs
more time than ours.

3.5. Experiment II: Error Link Classification and Link Error
Detection in TwoHINs. *e evaluation metric is the same as
the error detection task. *e first task, error link classifi-
cation, is similar to the errorless link classification. *e
difference is in the training set, where error link classification
is trained on the noise training set while testing set and
validation set are the same. A small change in our model
takes place here, as our model cannot converge optimal in
the noise training set, which means our model detects noise.
We first train and evaluate our model on the training set
(both positive and negative-sampled links) and then retrain
our model on the generated training set where labels are
predicted from the first trained model’s evaluation. *e
second task, link error detection, is conducted on the
training set. *e results are shown in Figure 4 in the format
of PR curve to test different models’ performance on the
binary classification task of detecting error links.

In Table 4, we can see our model achieves the best ac-
curacy and F1-score, when compared with other models in
the multi-HIN setting for error link classification in 10% and
40% neg situation. In detail, our model thought 786856,
816749, and 895114 links may be correct in the first train and
evaluation round separately (where 757126, 757135, and
757139 are truly correct), where 10%, 20%, and 40% noise
datasets contain links of 834973, 910880, and 1062693.
When the noise links rise, our model is more likely to rule
out false examples. It reveals that our model achieves ef-
fectiveness in modeling the inter-influence of HINs by using
interactive links. For TransE, DistMult, and ComplexE, they
are robust to errors in the training set where errors slightly
reduce models’ performance. It reveals that the traditional
embedding model can handle the problem of error links in
multi-HIN trustworthiness situations. Two simplified
models indicate the importance of inner characteristics, and
we can conclude that the attributes are an important in-
dicator of whether a link is true or not. We think that the
reason why attribute factors play a more important role in
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the evaluation is the number of attributes. For 200,000
entities in this paper’s dataset, there are 1,612,848 attribute
descriptions in total, while the interactions between HINs
are subject to mutual influence conditions, where the
number of influence restrictions is far smaller than that of
attribute description information. *erefore, deleting at-
tribute information will affect the performance of the model
more than deleting interaction information.

In Figure 4, we can see our model’s PR curve is above
TransE’s PR curves in the multi-HIN setting for link error
detection in all neg situation. DistMult and ComplexE cannot
distinguish noise links in the training set, so they are not plotted
in Figure 4. It reveals that our model achieves effectiveness in
detecting noise in multi-HIN situation. Figure 4 also explains
that there is a difference between the distributions of true links
and noise links’ scores both in multi-HITE and TransE model.
For lines of TransE in Figure 4, there exist sharp drops in the left
part. *is can be explained that the scores for true links and
noisy links do not have a large gap, especially near extreme
threshold where all links are thought as positive. When the
threshold drops, few links are thought to be noise while positive
links are mistaken as noise, which will influence the curve

sharply. Also, it can be observed that the PR curve rises when
the number of noise links increases as it is easier to detect errors
when errors are more frequent.

3.6. Experiment III: Error Link Classification in Different
Combinations of HINs. In this part, we try to combine
different HINs with different numbers of HINs to compare
the performance of our model for error link classification.
*e results are shown in Table 5. In the case of combining
different data sources, our model proves robust from the
results. At the same time, with the increment of data sources,
our model can make more use of the interaction information
between different data sources to provide more sufficient
evidence for link classification.

3.7. Experiment IV: Influential Method Evaluation.
Finally, we test how the performance of two ILEs varies with
different values of the threshold and test the model in er-
rorless link classification tasks. Based on the results in Ta-
ble 6, we can conclude that alignment ILE is more sensitive
to the threshold value because its threshold is close to 0

Table 2: Statistics of HINs constructed based on DBpedia and YAGO.

HIN # of nodes # of edges # of attributes # of node types # of links
DBpedia2 100000 643 760062 225 428952
YAGO 100000 64 827682 295 502563
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Figure 4: Trade-off between precision and recall according to trustworthiness threshold.

Table 3: Performance of link prediction from all the models on multiple HINs.

Data
Multi-HITE Minfluence- Mattribute- TransE R-GCN DistMult ComplexE
acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1

DBpedia1 — — 0.92 0.92 0.87 0.88 0.91 0.91 0.88 0.88 0.90 0.89 0.91 0.90
Wikidata — — 0.94 0.94 0.93 0.89 0.90 0.90 0.89 0.89 0.88 0.88 0.89 0.88
Combined 0.95 0.95 0.93 0.93 0.90 0.90 0.92 0.92 0.90 0.90 0.91 0.91 0.91 0.91
“acc.” and “F1” denote the accuracy and F1-score of estimations, respectively.
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compared with neighbour ILE. It should be explained that
neighbour ILE (see equation (9)) has fewer components
compared with alignment ILE (see equation (8)).

4. Conclusions

In this paper, we focus on the multi-HIN trustworthiness
evaluation problem and propose a co-embedding space
evaluation method. Our model incorporates inner-HIN and
inter-HIN characteristics into the loss function. A deep
neural network is used in our model to solve the problem.
We compare our model with other single-HIN trustwor-
thiness evaluation methods on a multi-HIN dataset. Ex-
perimental results demonstrate that our model can well
accomplish the trustworthiness evaluation task and out-
performs baseline models. For future works, we will focus on
how to incorporate truth value discovery into our model.
Besides, the processing of our model is complicated com-
pared with other models such as TransE, DistMult, and
ComplexE. *erefore, we need to find a concise way to
evaluate trustworthiness while maintaining the current level
of accuracy.
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